chemical auxiliaries sales

 chemical auxiliaries sales
chemical auxiliaries sales
Home page About C.I. Madder Contact us,
Home Page About us Contact

chemical auxiliaries sales, textile, recruitment, industry, technologists, dyehouse, managers, shift, dyers, spinning, knitting, weaving, factory, printing, colour, chemists, sales, clothing, industry, dyestuff, sales, chemical, auxiliaries, chemical auxiliaries sales

You may find this relevant information helpful

European dyers reached their height of skill in the thirteenth century, mainly due to the guild systems who vigilantly maintained a high standard of quality. In many countries dyers were graded by the guild system, the master dyers being allowed to use the major "fast" dyes while their lesser colleagues were restricted to the slower, "fugitive" dyes. In some places it was forbidden to possess, let alone use, major dyestuffs unless you were a member of a guild. In Germany, the dyers and woad workers were regulated by the guilds, each grower having to present his crop to a "sworn dyer" to determine its quality, weight and condition before it could be sold. English producers of woad had fewer restrictions, mainly that of a proclamation in 1587 to restrict growers to certain field size and ensure that no woad mills were sited within three miles of a royal residence, market town or city because of the highly offensive odor they emit. Even the local doctors in Venice in 1413 city fathers to prohibit dyeing with either woad or ox-blood after March first because of the "unhealthy smell." France had developed an extensive and efficient textile industry by the 13th century and also increased the dyers craft by developing varied techniques to achieve additional colors from the basic dyestuffs. At the end of the 16th century, there were over 220 master dyers listed in Paris alone.

While the powerful guild system had numerous dyestuffs with which to blend their color palates of fiber for the bluebloods and wealthy merchants, dyeing in the lower classes was a bit more restrictive. Without the money (or connetions) to buy indigo, cochineal and turmeric, clothing in the country tended to natural colors - whites, blacks, browns, grays, and tans of the natural colors of the fibers themselves, with the reds, greens and yellows of local plants used for both food, medicine and dyes. In short, home dyers used any plants they could lay their hands on that would give a good color. Some colors were even derived accidentally. Washing bee hives in preparation for making mead could yield yellows and golds. Blackberries and Bilberries that stained the fingers of pickers could also be used to achieve pale blues and purples, although these were not often color or lightfast. In England, the multitudinous variety of lichens and mosses produced greens, grays and browns.

By the seventeenth century a world-wide shipping and trading network was in place, allowing dyestuffs from all parts of the world to be brought to Europe. Legislation from earlier centuries to protect the growers and users of specific dyestuffs was overturned in favor of new demands and standards set by the growing consumer-focused society who wanted more colors and better quality. In the eighteenth and nineteenth centuries the practice of colonialism insured that there would always be a supply of foreign dyestuffs.

As textile weaving technology advanced with the advent of machines to spin, design and weave fabric, dyers were forced to be able to produce dyes with exact shades, matching color lots and most importantly, ones that would stand "fast" to the new mechanical and chemical processing. In addition, exporters wanted colors that would stand up to tropical sunlight and still be exotic enough for foreign tastes. Dyers in turn demanded from their suppliers purer chemicals and dyestuffs of consistent quality. Hand in hand, dyers, manufacturers, chemists, and dyestuff producers worked hand in hand to keep up with the progress of technology. Chemists in many countries had found a means of extracting highly concentrated powders or pastes from traditional dyestuffs that made stronger colors, such as cochineal carmine and madder garancine. Other procedures were used to extract indigo that gave us sulphonated indigo and Saxon blue. A few novel dyes (precursors of future chemical dyes) such as the yellow obtained from picric acid also made an appearance.